

2003 AFCEE Technology Transfer Workshop

Promoting Readiness through Environmental Stewardship

Impact of Landfill Closure Designs on Long-Term Natural Attenuation of Chlorinated Hydrocarbons

Doug Downey
PARSONS
25 February 2003

Objective

 Develop alternative landfill closure designs and management strategies that can enhance long-term natural attenuation of chlorinated solvents in DoD landfills and leachate-contaminated groundwater

Task Descriptions

- **■** Literature Review
- Landfill Data Review
- Conceptual Landfill-Design Model
- Technical Report

Project Organization

Background

 Hundreds of landfills on DoD installations have generated CAH plumes in groundwater

Problem

- Conventional landfill closure strategy is expensive and not always warranted
- Impermeable covers may impede natural attenuation processes
- Landfills have become "dry tombs"

A Solution

- The "enhanced leaching" theory of landfill treatment may provide more efficient and permanent wastemanagement solutions
- "Bioreactor" landfills utilize leachate recirculation to accelerate source leaching and promote waste biodegradation and stabilization within a "closedloop" system
 - Concept conceived during the 1970s
 - Primarily applied to newer landfills

Schematic Cross-Section of Landfill Bioreactor Components

Regulatory Considerations

- 1993 Source containment presumptive remedy for MSW landfills under CERCLA
- 1996 Presumptive remedy should be applied to appropriate military landfills
- Recent paradigm shifts within USEPA
 - Risk-based/performance-based corrective action approaches
 - RCRA reforms of 2001 promote use of innovative approaches
 - More-favorable framework for innovative management strategies
 - USEPA is sponsoring Bioreactor landfill research

Decision Trees

- Developed to assist DoD RPMs select an appropriate remedial strategy
 - Landfill Screening
 - Remedial Alternative Assessment
 - Landfill Cover Designs

Landfill Screening Decision Tree

- Guides uses to pursue MNA, or
- Complete detailed remedial alternative assessment to mitigate CAH plume risks

Remedial Alternative Assessment Decision Tree

- Addresses necessity of Source Remediation
- Pursue bioreactor options
 - Anaerobic
 - Aerobic
- Pursue other, nonbioreactor remedial options

Elements of Successful Bioreactor Formation

- Collecting and controlling leachate as it is generated
- Effectively redistributing leachate throughout the landfill
- Creating in situ treatment zones that promote robust microbial activity
- Managing landfill gases

Favorable Conditions for Bioreactor

- Dissolved plume can be contained by extracting groundwater at a rate that can be reapplied within the landfill
 - Capacity of landfill to assimilate recirculated water not exceeded
 - Optimal moisture content required to operate an effective bioreactor not exceeded
 - No excessive leaching or leachate seeps
 - No undesirable alteration of hydraulic or geochemical conditions

Phases of Landfill Waste Stabilization

Site Characteristics Influencing Bioreactor Operation and Effectiveness

<u>Favorable</u>

Unfavorable

Subsurface Heterogeneity

Hydraulic Conductivity

Plume Thickness

Hydrogeologic Complexity

Source Area Definition

Chemical and Geochemical Characterization

One Scenario: Creation of Sequential Enhanced Anaerobic and Aerobic Zones Beneath a Landfill

Bioreactor Costs

- Estimated total system cost for unlined landfill
 - collection/recirculation of leachate-contaminated groundwater and bioreactor construction with mulch sublayer -- \$100K to \$140K per acre
 - O&M -- \$60K to \$80K per year

Bioreactor Costs (cont.)

- Actual Case Studies for Lined Landfills
 - Construction costs of \$35K to \$148K per acre (compared to ~\$450K per acre for RCRA cover)
 - O&M costs of \$64K to \$300K per year
 - Annual <u>cost savings</u> for full-scale operating bioreactors of \$75K to \$500K compared to life-cycle <u>cost increase</u> of \$1.40 \$2.15/ton in favor of dry landfills

Selected Landfill Cover Types

Conventional Cover

Capillary Barrier

ET Cover

After Weand et al., 1999

Landfill Cover Designs Decision Tree

- Implement lowpermeability cover, or
- Implement vegetative cover, with or without an organic sublayer

Conditions Conducive to ET Covers

- Significant portion of source at least seasonally saturated
- Precipitation rates and/or vadose zone permeability/thickness allow controlled infiltration

Use of Organic Layer to Enhance Reductive Dechlorination of CAHs

Phase II Field Test

- Funded by ESTCP
- Site
 Selection/Regulatory
 Approval currently
 underway
- Two 30' x 30' test plots
 - #1 ET cover with mulch sublayer, no recirc.
 - #2 Leachate recirculation through mulch sublayer
 - 1 year O&M

